3,255 research outputs found

    Quantum dense coding scheme via cavity decay

    Full text link
    We investigate a secure scheme for implementing quantum dense coding via cavity decay and liner optics devices. Our scheme combines two distinct advantages: atomic qubit sevres as stationary bit and photonic qubit as flying bit, thus it is suitable for long distant quantum communication.Comment: 5 pages, 2 figure. A revised version, accept for publication in Journal of Modern Optc

    Revisiting the BB-physics anomalies in RR-parity violating MSSM

    Full text link
    In recent years, several deviations from the Standard Model predictions in semileptonic decays of BB-meson might suggest the existence of new physics which would break the lepton-flavour universality. In this work, we have explored the possibility of using muon sneutrinos and right-handed sbottoms to solve these BB-physics anomalies simultaneously in RR-parity violating minimal supersymmetric standard model. We find that the photonic penguin induced by exchanging sneutrino can provide sizable lepton flavour universal contribution due to the existence of logarithmic enhancement for the first time. This prompts us to use the two-parameter scenario (C9V,C9U)(C^{\rm V}_9, \, C^{\rm U}_9) to explain bs+b \to s \ell^+ \ell^- anomaly. Finally, the numerical analyses show that the muon sneutrinos and right-handed sbottoms can explain bs+b \to s \ell^+ \ell^- and R(D())R(D^{(\ast)}) anomalies simultaneously, and satisfy the constraints of other related processes, such as BK()ννˉB \to K^{(\ast)} \nu \bar\nu decays, BsBˉsB_s-\bar B_s mixing, ZZ decays, as well as D0μ+μD^0 \to \mu^+ \mu^-, τμρ0\tau \to \mu \rho^0, BτνB \to \tau \nu, DsτνD_s \to \tau \nu, τKν\tau \to K \nu, τμγ\tau \to \mu \gamma, and τμμμ\tau \to \mu\mu\mu decays.Comment: 10 pages, 8 figures, matches to the version published in EPJ

    Research on the Application of Blockchain in SMEs Credit Risk

    Get PDF
    The credit of an enterprise is related to its own development. This paper mainly discusses the relationship between the credit risk of small and medium enterprises (SMEs) and the application degree of blockchain. 64 listed companies with block chain technology as the core theme are selected to analyze their comprehensive financial data. Factor analysis is used to quantitatively evaluate the application degree of blockchain in SMEs, and then the Logistic model is used to evaluate the credit risk of SMEs. Finally, combining the application degree of blockchain in small and medium-sized enterprises and the credit risk assessment of these two groups of data. It confirms the conclusion that the higher the degree of blockchain application, the closer the supply chain finance relationship, and the better the credit status

    A diagnostic challenge for schistosomiasis japonica in China: consequences on praziquantel-based morbidity control

    Get PDF
    Worldwide schistosomiasis continues to be a serious public health problem. Over the past five decades, China has made remarkable progress in reducing Schistosoma japonicum infections in humans to a relatively low level. Endemic regions are currently circumscribed in certain core areas where re-infection and repeated chemotherapy are frequent. At present, selective chemotherapy with praziquantel is one of the main strategies in China's National Schistosomiasis Control Program, and thus diagnosis of infected individuals is a key step for such control. In this paper we review the current status of our knowledge about diagnostic tools for schistosomiasis japonica. A simple, affordable, sensitive, and specific assay for field diagnosis of schistosomiasis japonica is not yet available, and this poses great barriers towards full control of schistosomiasis. Hence, a search for a diagnostic approach, which delivers these characteristics, is essential and should be given high priority

    Scheme for sharing classical information via tripartite entangled states

    Full text link
    We investigate schemes for quantum secret sharing and quantum dense coding via tripartite entangled states. We present a scheme for sharing classical information via entanglement swapping using two tripartite entangled GHZ states. In order to throw light upon the security affairs of the quantum dense coding protocol, we also suggest a secure quantum dense coding scheme via W state in analogy with the theory of sharing information among involved users.Comment: 4 pages, no figure. A complete rewrritten vession, accepted for publication in Chinese Physic

    Scheme for implementing quantum information sharing via tripartite entangled state in cavity QED

    Full text link
    We investigate economic protocol to securely distribute and reconstruct a single-qubit quantum state between two users via a tripartite entangled state in cavity QED. Our scheme is insensitive to both the cavity decay and the thermal field.Comment: Final version to appear in Physica

    Assessment of the spatial and temporal variations of water quality for agricultural lands with crop rotation in China by using a HYPE model

    Get PDF
    Many water quality models have been successfully used worldwide to predict nutrient losses from anthropogenically impacted catchments, but hydrological and nutrient simulations with little data are difficult considering the transfer of model parameters and complication of model calibration and validation. This study aims (i) to assess the performance capabilities of a new and relatively more advantageous model-hydrological predictions for the environment (HYPE) to simulate stream flow and nutrient load in ungauged agricultural areas by using a multi-site and multi-objective parameter calibration method and (ii) to investigate the temporal and spatial variations of total nitrogen (TN) and total phosphorous (TP) concentrations and loads with crop rotation using the model for the first time. A parameter estimation tool (PEST) was used to calibrate parameters, which shows that the parameters related to the effective soil porosity were most sensitive to hydrological modeling. N balance was largely controlled by soil denitrification processes, whereas P balance was influenced by the sedimentation rate and production/decay of P in rivers and lakes. The model reproduced the temporal and spatial variations of discharge and TN/TP relatively well in both calibration (2006–2008) and validation (2009–2010) periods. The lowest NSEs (Nash-Suttclife Efficiency) of discharge, daily TN load, and daily TP load were 0.74, 0.51, and 0.54, respectively. The seasonal variations of daily TN concentrations in the entire simulation period were insufficient, indicated that crop rotation changed the timing and amount of N output. Monthly TN and TP simulation yields revealed that nutrient outputs were abundant in summer in terms of the corresponding discharge. The area-weighted TN and TP load annual yields in five years showed that nutrient loads were extremely high along Hong and Ru rivers, especially in agricultural lands
    corecore